

Dosing Regimen selection supported by population PKPD model of thrombocytopenia

Christophe Meille¹, Nelson Guerreiro¹, Claire Fabre¹ and Astrid Jullion¹

¹Novartis, Basel, Switzerland

Objectives

To develop a PK/PD model describing the longitudinal time-course of platelet \bullet (PLT) changes in patients treated with the p53-HDM2 protein-protein interaction inhibitor HDM201

- To apply a methodology to identify an optimized dosing regimen that could be tolerated for at least six treatment cycles

Background

- Phase I study in patients (n=101) with p53 wild-type solid tumors:
 - 1623 PK and 1385 PLT observations
 - platelet transfusions and HDM201 dosing events \bullet
- Oral regimens tested : Q3W, day 1 and day 8 in a 4W cycle, QD 2Won/2Woff, and QD 1Won/3Woff
- Delayed thrombocytopenia is the primary dose limiting toxicity resulting in dose reductions and/or interruptions.
- Efficacy is assumed to be regimen independent [1]

Methods

- PK and PLT models were established in a two-step approach using non-linear mixed-effects modeling implemented in Monolix 2016R1
- Original methodology [2] was extended to integrate impact of inter-individual variability (IIV)
- **Optimization criterion** was defined as the maximum total dose per cycle while having the proportion of Grade 4 thrombocytopenia during 6 cycles less than 25%

Table 2PD parameters

	PLT	MMTP	<i>T12</i>	sPa	sPm	alp	<i>cfrP</i>	ke0	cfr	ilag	t50	\mathcal{Z}	H	G	kr1D	ke01
	(G/L)	<i>(h)</i>	<i>(h)</i>	-	-	(G/L)	(mL/ng)	(1/h)	(mL/ng)	<i>(h)</i>	<i>(h)</i>	-	-	-	(mL/ng)	(mL/ng
Estimate	241	294	126	0.76	0.08	10.2	-6.15	1.19 10 ⁻⁶	5.44	5 (-)	719	7.46	1 (-)	0.93	4.3 10 ⁻⁵	0.0003
	(4)	(8)	(14)	(15)	(27)	(26)	(21)	(24)	(46)		(8)	(22)		(18)	(94)	(49)
IIV	0.62	0.27	0.25	0.24	1.06	0.25	0.2 (-)	0.84	0.39	0.1 (-)	0.38	0.1 (-)	0.26	0.1 (-)	0.2 (-)	1.19
	(8)	(17)	(-)	(48)	(20)	(-)		(10)	(105)				(39)			(20)
Mean est	imates	with rela	tive star	ndard ei	ror (%)											

Figure 1 Example of individual observed and predicted PLT time course

Time (cycle of 28 days)

- The following steps were applied: \bullet
 - 1. Define a set of **140 dosing regimens** for a 28 day cycle (daily dose from 10 mg to 500 mg and number of daily administrations from 1 to 14)
 - 2. Simulate platelet profiles for 500 virtual patients over 6 cycles
 - 3. Derive for each dosing regimen the total dose per cycle and the compliance to the safety constraint

Results

PK model

One-compartment with a delayed parallel zero- and first-order absorption process, and linear clearance (Cl/F).

Table 1 PK parameters

	r	<i>T1</i>	<i>T2</i>	TkO	ka	V/F	Cl/F	Beta_V		
		<i>(h)</i>	<i>(h)</i>	<i>(h)</i>	(1/h)	(<i>L</i>)	(<i>L/h</i>)			
Estimate	0.753 (4)	0.688 (5)	0.410 (2)	1.105 (7)	1 (21)	120 (4)	6.936 (6)	0.855 (14)		
IIV	-	-	-	-	1.346 (12)	0.333 (9)	0.482 (9)	-		
Mean estimates with relative standard error (%)										

PD model

• PK/PD model for thrombocytopenia was modified from Friberg et al. (2002) [3] to:

Optimization

The optimized dosing regimen for consecutive daily administrations corresponds to a total dose per cycle of 350mg across 7 days with a daily dose of 50mg

Conclusions

- include a drug action decoupled from feedback
- add an indirect drug effect on feedback through an effect compartment.
- PLT transfusion events were implemented as 0.5h infusions with estimation of amount and PLT half life

- The methodology allows to suggest an optimal dosing regimen maximizing the total dose while mitigating the safety risk of severe thrombocytopenia
- A population PKPD approach with a safety endpoint (PLT) was used to optimize dosing regimen of HDM201 by simulating a set of 140 dosing regimens and taking into account impact of IIV on the safety constraint
- The metrics of "maximization of the total dose" could be replaced by "maximization of proportion of responders" using a PKPD model of efficacy endpoint

References

[1] PAGE 27 (2018) Abstr 8633 [www.page-meeting.org/?abstract=8633] [2] Meille et al, 2016. "Revisiting Dosing Regimen Using Pharmacokinetic/ Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy.

[3] Friberg et al, 2002. "Model of chemotherapy-induced myelosuppression with parameter consistency across drugs." J. Clin. Oncol. 20:4713–4721.

Poster presented at Population Approach Group Europe (PAGE) 29 May – 1 June, 2018, Montreux, Switzerland